

Stefan Glunz

Fraunhofer Institute for Solar Energy Systems ISE

Becquerel-Award Ceremony 29th EU PVSEC, Amsterdam 24. September 2014

- What is the limit?
 - Shockley-Queisser vs Auger
- Towards the limit
 - Recombination losses
 - Volume
 - Surfaces
 - Contacts
 - Recent results
- Beyond the limit
 - III/V on silicon
 - Perovskites on silicon

What is the limit?

- Shockley-Queisser vs Auger
- Towards the limit
 - Recombination losses
 - Volume
 - Surfaces
 - Contacts
 - Recent results
- Beyond the limit
 - III/V on silicon
 - Perovskites on silicon

What is the limit? Detailed Balance

- Shockley und Queisser, 1961
- Detailed balance between sun and solar cell
- Assumption:
 Solar cell emits photons via radiative recombination

W. Shockley & H. Queisser

Radiative recombination in a direct semiconductor

What is the limit? Maximum Efficiency as a Function of Bandgap

- Max. Efficiency ~ 33%
- High thermalisation for low bandgaps
- High transmission for high bandgaps
- Silicon and GaAs are close to the optimum
- But: Record values of GaAs are closer to the limit.
- Is III/V-R&D better than silicon-R&D ?

What is the Limit? Other Recombination Channels

Assumption:

Ideal solar cell: only radiative recombination (Shockley and Queisser, *J. Appl. Phys.* 1961)

lated using the principle of detailed balance.⁹ It is this radiative recombination that determines the detailed balance limit for efficiency.¹⁰ If radiative recombination is only a fraction f_c of all the recombination, then the efficiency is substantially reduced below the detailed balance limit.

Radiative recombination in an indirect semiconductor

But silicon is an indirect semiconductor \rightarrow radiative recombination has a low probability

What is the limit? **Auger-Recombination**

In silicon solar cells Auger-recombination is the limiting intrinsic loss mechanism

Pierre Auger 1899 - 1993

Auger recombination in an indirect semiconductor

What is the limit? Taking Auger Recombination into Account

- Shockley, Queisser (1961)
 = 33% (AM1.5)
- Theoretical efficiency limit for silicon (taking actual Auger model ¹ into account) = 29.4%²

¹Richter, Glunz et al., Phys. Rev. B 86 (2013)

²Richter, Hermle, Glunz, IEEE J. Photovolt. (2013)

What is the limit? **Taking Auger Recombination into Account**

- Shockley, Queisser (1961) = 33% (AM1.5)
- Theoretical efficiency limit for silicon (incl. Auger) $= 29.4\%^{1}$
- Best silicon solar cells $= 25.6\%^{2}$
- Corresponds to 87% of theoretical efficiency limit
- (GaAs = 87% ☺)

¹Richter, Hermle, Glunz, *IEEE J. Photovolt. (2013)* ²Masuko et al., *IEEE-PVSC* (2014)

- What is the limit?
 - Shockley-Queisser vs Auger
- Towards the limit
 - Recombination losses
 - Volume
 - Surfaces
 - Contacts
 - Recent results
- Beyond the limit
 - III/V on silicon
 - Perovskites on silicon

Towards the Limit Small-area Record Values

Towards the Limit Small-area Record Values

Small-area record cells 29.4% Mono-Si: 30 25.0% (da) (PERL, UNSW 1999) 25 Multi-Si: Efficiency [%] 10 20.4% (ap) (LFC, ISE 2004) 10 – mono-Si (p-type) 5 -■- mono-Si (n-type) multi-Si (p-type) 0 2010 1960 1990 1940 1950 1970 1980 2000 ap = aperture area da = designated area Data from M.A. Green, PIP 17, p.183 (2009)

Towards the Limit Small-area Record Values

- Small-area record cells
- Mono-Si:
 25.0% (da)
 (PERL, UNSW 1999)
- Multi-Si:
 20.4% (ap)
 (LFC, ISE 2004)
- Since 1974 nearly only records on *p*-type silicon
- Main progress: Reduction of recombination losses

ap = aperture area da = designated area

Towards the Limit Influence of Surface and Bulk Recombination

Towards the Limit Multicrystalline Silicon

- Defect engineering during cell process
- Very thin wafers (99 µm) to reduce influence of volume recombination
- Plasma texture on front side
- World record on multicrystalline silicon (20.4%)

Schultz, Glunz, Willeke, *Prog. Photovolt. 12* (2004)

Towards the Limit Monocrystalline Silicon

- Additional bulk recombination in *p*-type Cz-grown silicon
- Light-induced degradation
- Metastable defect related to boron and oxygen¹

July 1998, 2nd World Conference, Vienna

On the occasion of the 2nd World Conference on Photovoltaic Solar Energy Conversion 6 - 10 July 1998, Vienna, Austria

S. W. Glunz, S. Rein, W. Warta, J. Knobloch, W. Wettling

have been selected by the official jury as the winners of the

Poster Award

for the topic Crystalline Silicon Solar Cells and Technologies.

This outstanding scientific poster was deemed to be a particularly valuable contribution to this International Conference on Photovoltaic Energy Conversion.

The General Chairperson

The General Vice-Chairpersons

Prof. J. Schmid

Dr. S. Bailey

Towards the Limit Monocrystalline Silicon

- Additional bulk recombination in *p*-type Cz-grown silicon
- Light-induced degradation
- Metastable defect related to boron and oxygen¹
- → Gallium–doped silicon²
- → n-type silicon

¹ Glunz et al., EUPVSEC, Vienna (1998) ² Glunz et al., Progress Photovoltaics 7 (1999)

Towards the Limit Large-area Record Cells

- Interdigitated back contact back junction solar cells
- Excellent contact passivation (a-Si/c-Si heterojunction, passivated contacts)
- Sanyo¹ (da=143.7 cm²) $25.6\% (V_{oc} = 740 \text{ mV})$
- SunPower² (ap=121 cm²) 25.0% (V_{oc} = 726 mV)

Edge losses are getting crucial

Towards the Limit Large-area Record Cells

- Large-area (Sunpower, Sanyo/Panasonic)
- Extremely high lifetimes needed (>> 1 ms)
- Usage of *n*-type silicon to avoid light-induced degradation

- What is the limit?
 - Shockley-Queisser vs Auger
- Towards the limit
 - Recombination losses
 - Volume
 - Surfaces
 - Contacts
 - Recent results
- Beyond the limit
 - III/V on silicon
 - Perovskites on silicon

Beyond the Limit Magic Antireflection Coatings (AAA-Coating®)

© Fraunhofer ISE, S. Glunz, September 2014

Beyond the Limit Silicon Solar Cell

- Theoretical limit for E_{g,Si}: 33% (29.4% incl. Auger)
- Word record for silicon solar cells: 25.6%

Beyond the Limit Multijunction Solar Cells

Beyond the Limit Multijunction Solar Cells

- Succesfully realized with **III/V-materials**
- Tandem cells with Si bottom cell
 - III/V on Si
 - Silicon quantum dots
 - Perovskites
- "Silicon Solar Cell 2.0" \rightarrow

Beyond the Limit Silicon-based Multijunction Cells

- Top cells with high bandgap to utilize blue and visible light
- c-Si bottom cells for IR light
- Deposition by direct epitaxial growth or wafer bonding

Beyond the Limit GaInP/GaAs/Si Solar Cells

- Efficient utilization of spectrum
- High efficiency
- Wafer bonfing
- But: Cell design optimized for concentration and AM1.5d
- More to come quite soon ☺

K. Derendorf et al., *IEEE JPV* (2013) S. Essig, *PhD Thesis* (2014)

Conclusion

Crystalline silicon, the vital dinosaur, hunting record efficiencies. (pretty active for a first generation)

Conclusion

- Crystalline silicon, the vital dinosaur, hunting for record efficiencies (pretty active for a first generation)
- Coming soon: Crystalline silicon solar cells 2.0
- Let's show Pierre A. what we can do !

Conclusion

- Crystalline silicon, the vital dinosaur, hunting for record efficiencies (pretty active for a first generation)
- Coming soon: Crystalline silicon solar cells 2.0
- Let's show Pierre A. what we can do !

