Thin-film silicon solar cells: the « micromorph » option

22nd European Photovoltaic Solar Energy Conference, Milano

Outline

- History of PV (« Looking back »)
- Present status of PV
- Amorphous silicon
- Microcrystalline silicon
- Micromorph Tandem cells

Alessandro Volta,

- Italian Physicist, from Como (Lombardy),
- Invented the Electric Battery in 1800

Alexandre Edmond Becquerel,

- French Physicist
- Observed, for the first time, in 1839, the interaction between light and electricity, which is the basis of the photovoltaic effect

Julius Elster and Hans Geitel

- High School Teachers in Wolfenbüttel (Germany)
- Built the first *Photovoltaic Solar Cell* around 1891, based on alkaline metals (Na, K,...)

Exhibition and Commemoration:

September 2007 to Jan 2008 www.elster-geitel.de

Researchers at Bell Laboratories, N.J. (USA)

 Built in 1953 the first photovoltaic solar cells based on **Silicon** (with an efficiency of 5%)

In 1954, the U.S. News & World Report wrote:

....one day such silicon strips.....

"may provide more power than all the world's coal, oil and uranium"

Since the « Arab Oil Embargo » (1973),

- Many Countries
 (USA, AUS, J, EU, CH, India,...)
 have set up R&D programmes and built demonstration sites to encourage the use of Photovoltaics
- Photovoltaic (PV) module production has been steadily increasing, by 25 to 30 % per year
- PV Module prices have been steadily decreasing, by 5-7% per year

Photovoltaics: present status

Since the year 2000,

Europe « wakes up » :

Feed-in tarifs for electricity produced by Photovoltaic Modules, based on « actual generation cost » :

- ■Germany, 2000
- Spain, Italy, France,Greece,... (2006/2007),
- ■Switzerland (2008)!

Photovoltaic Cell/Module Factory in Germany (Q-Cells)

Photovoltaics: present status

Today, solar electricity

- costs around 0.50 €/kWh (in CH)
- but has to compete on the grid-connected electric power market, where the kWh is often sold for less than 10 € Cents/kWh

Solar electricity therefore needs continued political support And strong R&D support to be able to establish itself

Photovoltaics: present status

- Over 90% of today's PV modules are Wafer-based Crystalline Silicon modules
- This technology has profited from the wide experience of Microelectronics Industry
- Excellent performance results are achieved

Such wafers/modules:

- are at present limited to rather small dimensions
- consume a large amount of production energy
- have energy payback times of several years

This technology is facing a supply problem with the high-purity silicon used as raw material

It is therefore re-assuring that we have today various alternative technologies

A technological alternative

Thin-film silicon (first, amorphous silicon) is one of the alternatives:

- Wide production and field experience
- Synergy with LCD display Industry
- Raw materials non-toxic and abundant
- Low energy payback times
- Flexible modules are possible
- Suitable for Building Integration

Low-temperature (≈200°C) plasma fabrication process Low optical absorption in material

→ Light trapping needed in cells

Facade at the Bavarian Ministry for Environmental Protection (1993)

Amorphous silicon (a-Si:H) PV modules

- Roughness of Layers, such as
 Transparent contact layers (SnO₂, ZnO)
 leads to scattering and trapping of light
- Amorphous silicon suffers from initial light-induced degradation
- → <u>Stabilized</u> module efficiencies only
 ≈ 6-6.5% (MHI, Kaneka, Schott Solar,...)
- Tandem and multi-junction cells can basically help increase efficiency by 1-2 %
- Triple-junction <u>flexible</u> modules with amorphous silicon-germanium alloys are available from Uni-Solar (USA)

Very-High frequency plasma enhanced CVD

- In 1985 we started our laboratory for amorphous silicon solar cells at IMT Neuchâtel.
- We had not enough funds to purchase commercial deposition equipment with the standard 13.56 MHz plasma excitation frequency. We had to build the deposition reactors ourselves. We therefore chose **80 MHz** as plasma excitation frequency.
- This was the beginning of the Very High Frequency
 (VHF) Plasma Deposition Technique (Freq > 25 MHz)
- VHF allows one to increase deposition rates and obtain up to 3 x higher fabrication throughputs.
 This means considerable savings in investment costs
- VHF is at present used by many Industries involved in the production of amorphous silicon modules

Introduction of microcrystalline silicon (µc-Si:H)

With VHF Plasma Deposition it became « easy » to produce high-quality hydrogenated microcrystalline silicon (μc-Si:H)

In 1995 IMT made the first microcrystalline cells with over 5% efficiency

- they have (almost) no light-ind. degrad.
- they absorb near-Infrared light (gap 1.1 eV)

Since then, many other labs have also started to study microcrystalline silicon

This form of thin-film silicon is complementary to amorphous silicon (gap 1.75 eV)

Microstructure of p-i-n μc-Si:H solar cell

Microcryst. Si is very complex: crystallites + amorphous phase + « cracks »!

The « micromorph » tandem:

µc-Si + a-Si → an « ideal » combination

- IMT pioneered in 1994 the μc-Si:H/a-Si:H or « micromorph » tandem
- Today, stabilized cell efficiencies of 11 to 12 % can be obtained with these tandems
- → In such a micromorph tandem, the solar spectrum is ideally shared between top (a-Si:H) and bottom (µc-Si:H) cell

µc-Si + a-Si → an « ideal » combination ?

Maximum efficiency plot for tandem cells

Conditions : all photons above E_g absorbed V_{oc} & FF a/c to semi-empirical limits

Energy gaps Eg of µc-Si:H and a-Si:H form an almost ideal combination

Upper efficiency limit for micro-morph tandem cell:

[A. Shah et al, J. of Non-Cryst. Solids, Vol 338-340C, pp 639-645.]

but we are today (11.7% stabilized eff.) still very far from upper limit (>30%) ->

WHY?

The « micromorph » tandem: µc-Si + a-Si

→ limitations in current J_{sc}

μc-Si

At present far too low $J_{sc} \approx 23-25 \text{ mA/cm}^2$

instead of 44 mA/cm²

Solution: light trapping

a-Si

Individual cell (almost) OK within Tandem : Problem ! (light trapping more difficult here)

Solution: Intermediate Reflector

between top and bottom cell

Maximum short-circuit current density J_{sc} , as a function of the gap Eg, for AM1.5

The « micromorph » tandem: µc-Si + a-Si

→ limitations in voltage V_{oc}

μc-Si

(500-600 mV : almost OK)

a-Si

Far below limit value {0.9 V instead of 1.4 V}

Reason: E_F cannot be pushed by doping near to E_C/E_V , due to amorphous structure (Bandtails)

No known way out!

Semi-theoretical limit for V_{oc} as a function of gap E_g , for AM 1.5 illumination, calculated a/c to the diode equation with J_o =1.5x10⁵ A/cm² x exp(- E_g /kT)) reverse saturation current

The « micromorph » µc-Si + a-Si tandem: lab cells ↔ theoretical **limits**

	<u> </u>		
	equation	Lab cell	Limit Value
J _{sc}	min{J _{top} , J _{bottom} }	23 /2 = 11.5	20
		[mA/cm ²]	[mA/cm2]
V _{oc}	V _{top} + V _{bottom}	0.9 + 0.5	1.4 + 0.6
		= <u>1.4 Volt</u>	= 2.1 V
FF	Average{FF _{top} , FF _{bottom} }	Aver{65%,75%}	
		_ 70%	76%

11.5 %

32 %

The « micromorph » tandem: µc-Si + a-Si

- Stabilized Efficiencies obtained today:
 11 to 12 % for laboratory cells
 8 to 8.5 % for commercial modules
 (Kaneka, Sharp,...)
- V_{oc} & FF have nearly reached highest possible values for a-Si:H

To obtain higher efficiencies:

- Improve light trapping by using better transparent contact layers and back reflectors with low losses and, thereby, increase J_{sc}
- Find new top cell design to increase V_{oc}?

Micromorph Production equipment

Several industries offer production equipment, originally designed for Liquid Crystal Display Production:

- OERLIKON successfully uses the KAI 1200, for simultaneous Plasma deposition of amorphous modules on twenty glass panels of 1.4 m² size; Deposition of micromorph modules is under development
- Applied Materials is currently developing plasma deposition for micromorph solar modules on 5.7m² glass panels

Outlook

Thin-film silicon is economically and ecologically one of the most promising materials for future large-scale photovoltaics

Low efficiencies are at present a limiting factor for a-Si based modules, with typical values of of stabilized module efficiencies of 6 to 8 % (commercially available),

With microcrystalline/amorphous (« micromorph ») tandem modules, one should be able to increase commercial efficiency to 10 %, in the next 2 to 3 years

Key equipment suppliers are entering the market, GWatts of production capacities announced by 2010

Goal (2010-2012) are modules at a production cost < 1€/W_p, with an output power of 100 W_p/m² and an annual output energy (in Milano) of 100 kWh/m²

Acknowledgements and Thanks

The work at IMT's PV Lab was financially supported by

- the Swiss Federal Government
 - Office féderal de l'énergie
 - Commission for Technology and Innovation (CTI)
- > the European Commission
- > IMT's Industrial Partners, especially:

IMT benefitted from close collaboration with many other groups:

Prague, Jülich, Konstanz, Polytechnique Paris, Princeton, AIST, ...

With my deep thanks to:

All members of IMT's PV Team, since 1985, especially to H. Curtins, H. Keppner, D. Fischer, J. Meier, N. Wyrsch, E. Vallat-Sauvain

...and my very best wishes to the present team under Christophe Ballif for the continuation of the work

Thanks for your attention

