

PV's significant Role to Power the Future Global Energy Needs with 100% Renewables

Becquerel Prize Award 27th EU PVSEC 2012 Frankfurt

Dr. Winfried Hoffmann – ASE President EPIA SMA Management Board Representative to the EPIA Member of Scientific Board of FhG-ISE and Supervisory Board of ISFH and Helmholtz

PV's significant Role to Power the Future Global Energy Needs with 100% Renewables

- Future global energy needs
- **>** Boundary conditiones for 100% Renewables
- PV's significant role

• ~¾ of today's ~100,000 TWh Secondary Energy Needs are used by only ¼ of the global (~7 bn) population

Future Global Energy Needs

- ~¾ of today's ~100,000 TWh Secondary Energy Needs are used by only ¼ of the global (~7 bn) population
- Technology development allows to decrease significantly the specific energy needs : "same quality of life with much less energy" examples: solid state lighting, electric mobility ("with renewable electricity!), house insolation (to decrease heating and cooling), etc

Future Global Energy Needs

- ~¾ of today's ~100,000 TWh Secondary Energy Needs are used by only ¼ of the global (~7 bn) population
- Technology development allows to decrease significantly the specific energy needs : "same quality of life with much less energy" examples: solid state lighting, electric mobility (...with renewable electricity!), house insolation (to decrease heating and cooling) ... and many, many more
- The future 10-12 bn people can be energized with ~200,000 TWh Secondary Energy (some scientists are even projecting less, old forecasts are significantly higher) – with a similar quality of life for everyone

Future Global Secondary Energy Needs

Total electricity production will increase from 20,000 TWh in 2010 to ~ 60,000 TWh in 2050+ at low growth for Renewables

Total electricity production will increase from 20,000 TWh in 2010 to ~ 120,000 TWh in 2050+ at high growth for Renewables

Α·S·E

Boundary conditiones for 100% Renewables

• 6 €/t CO2 is not sustainable!

Boundary conditiones for 100% Renewables

- 6 €/t CO2 is not sustainable!
- LCOE for Renewables to become lower compared to nuclear, coal and gas (wind on-shore with 6€ct/kWh competitive to new coal, PV in sunny regions today with less than 10 €ct/kWh competitive to peak gas power)

Competitiveness of PV Solar Electricity

Boundary conditiones for 100% Renewables

- 6 €/t CO2 is not sustainable!
- LCOE for Renewables to become lower compared to nuclear, coal and gas (wind on-shore with 6€ct/kWh competitive to new coal, PV in sunny regions today with less than 10 €ct/kWh competitive to peak gas power)
- Old technologies nuclear, coal and gas will become more and more expensive (fuel price, approval procedures, CCS for fossil ... if technically possible)

Boundary conditiones for 100% Renewables

- 6 €/t CO2 is not sustainable!
- LCOE for Renewables to become lower compared to nuclear, coal and gas (wind on-shore with 6€ct/kWh competitive to new coal, PV in sunny regions today with less than 10 €ct/kWh competitive to peak gas power)
- Old technologies nuclear, coal and gas will become more and more expensive (fuel price, approval procedures, CCS for fossil ... if technically possible)
- Renewable technologies are "riding down" their respective Price Experience Curve – no fuel cost, specific cost decrease due to technology development like in other high volume products (semiconductors, flat panel displays, glass coatings and many more)

PV Price Experience Curve

Price Experience Curve

Driven by Technology

- Wafer thickness $0,7\text{mm} \rightarrow 0,15\text{mm}$
- Kerf loss $0,5mm \rightarrow 0,10mm$
- Efficiency $8\% \rightarrow 22\%$
- Automation Industrial manufacturing
- Economy of scale $0,1MW \rightarrow 200MW$
- Modularity same building block from kW to GW systems

Further development of PV PEC

Price Experience Curve

1. PEC for c-Si will continue

2. Reason for different PEC and PEF for Thin Film PV

3. Different growth rates for global PV installations as parameter

4. Different fraction of TF/c-Si as parameter

Photovoltaic –

Future Price Development

... with "healthy" module prices ...

PEC Scenario

Source: WHff

Case A: Baseline TF share 15% const TF PEF 20% Case B:Paradigm Shift TF share $15\% \rightarrow 35\%$ TF PEF 25%

 $A \cdot S \cdot E =$

c-Si Technology price expectation in 2020 ~ (70 +/- 10) \$ct/W

Thin Film Technology price expectation in 2020 ~ (50 +/- 20) \$ct/W

"Healthy" versus "market economy driven" prices

PEC Scenario

Case A: Baseline TF share 15% const TF PEF 20%

> c-Si Technology price expectation in 2020 ca. 60 – 80 \$ct/W

> Thin Film Technology price expectation in 2020 ca. 30 – 70 \$ct/W

> > 2011 price range

DRAM – Moore's Law

120924

PEC for Flat Panel Display

Experience Curve

Driven by Technology

Customer Needs served by PV

on-grid

off-grid

consumer

high efficiency

€/kWh

€/hr light

W/m²

g/W

Record cell efficiencies of up to 21% on large area p-type Cz Si wafers achieved by SCHOTT Solar

Cell design

Results (best cells)

	Efficiency [%]
Screen-printed Ag front contacts	21.0*
Electroplated NiCu front contacts	20.9*

* independently confirmed by ISE Callab

Next generation manufacturing technologies demonstrate potential to reach 21% cell efficiency with simple and cost effective process sequences

All steps are available in multiple process options

Source: SCHOTT Solar AG

Share of PV Technologies

PV 2011: ~70 GW (~ 80,000,000 MWh)

Corresponding to 53 full size 1,300MW nuclear reactors ... and energy wise to the annual output of 9 such reactors

Actual annual growth for PV

Decade	% growth p.a.
1990 - 2000	20
2000 - 2010	52
2010 - 2020	
2020 - 2030	
2030 – 2040	
2040 – 2050	

Assumed growth rates and resulting power installed and energy produced

Decade	% growth p.a.
1990 - 2000	20
2000 - 2010	52
2010 - 2020	20
2020 - 2030	15
2030 – 2040	10
2040 – 2050	5
	Result:
Cumulative PV power 2050	22,000 GW
Annual energy production in 2050 at 1.3 kWh/W (average)	29,000 TWh

Source: WHff

A.S.E

Projection for Future RE Portfolio for a 100% Global End Energy Coverage

- e electricity
- p power
- h heat/cool

Development of the various energy sectors (approximate)

Total electricity production will increase from 20,000 TWh in 2010 to ~ 120,000 TWh in 2050+ at high growth for Renewables

Α·S·E

... getting interested in these thoughts?

Wiley is waiting for my story and the book should be ready around summer 2013

For better remembering take a flyer at the Wiley booth

Source:

> to all friends, colleagues and supporting seniors

Acknowledgements and thanks

- ➢ to all friends, colleagues and supporting seniors
- > to my family

wife Anneliese with children Tobias and Elisabeth plus our sunshine & grandson Elija with his mother Miriam

