Selectivity is the Essence of Solar Cells

Peter Würfel
Karlsruhe Institute of Technology

Solar cells must produce current

electrons have many handles at which forces can attack

charge: - grad (-eφ) electrical potential

mass: - grad m Ψ gravitational potential

particle: - grad µ chemical potential

resulting force: electrochemical potential

- grad (μ - e ϕ) = - grad η = - grad ε_F

driving forces are not selective

metal contacts are not selective

Separation of hydrogen and oxygen with selective membranes

driving force: pressure gradient, gradient of chemical potentials

Separation of electrons and holes by selective conductivities in front of metal contacts

optimal hetero- structure ($E_G = 1,34 \text{ eV}$)

full area contacts at maximum power

U. Wuerfel, A. Cuevas and P. Wuerfel, J. Photovoltaics 5, 461 (2015)

electrons and holes move against the field at max. power !! $V_b = 697$ mV, $V_{mpp} = 987$ mV

$$\eta = 33,7 \%$$

realisation in organic solar cells PTAA / perovskite / C60

