

Energy research Centre of the Netherlands

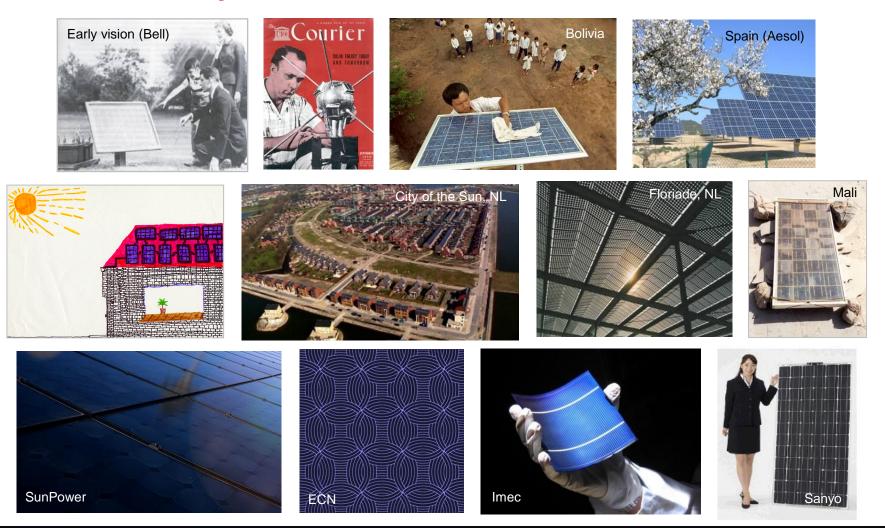
Prepare(d) for impact

photovoltaics on its way to terawatt-scale use

Wim Sinke

Contents

- The photovoltaic technology portfolio
 - wafer-based silicon in perspective
- Meeting expectations: from gigawatts to terawatts
 - can wafer-based silicon deliver?
- Outlook
 - the benefits of diversity



Contents

- The photovoltaic technology portfolio
 - wafer-based silicon in perspective
- Meeting expectations: from gigawatts to terawatts
 - can wafer-based silicon deliver?
- Outlook
 - the benefits of diversity

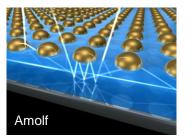
The many faces of wafer-based silicon PV

Cell & module technologies (flat plate)

<u>Commercial:</u> wafer-based crystalline silicon

- monocrystalline
- multicrystalline
- ribbons

Module efficiencies 13 ~ 19%

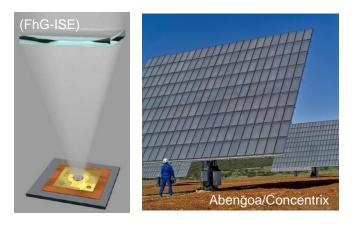


Commercial: thin films

- silicon
- copper-indium/gallium-diselenide (CIGS)
- cadmium telluride (CdTe)

Module efficiencies 7 ~ 13%

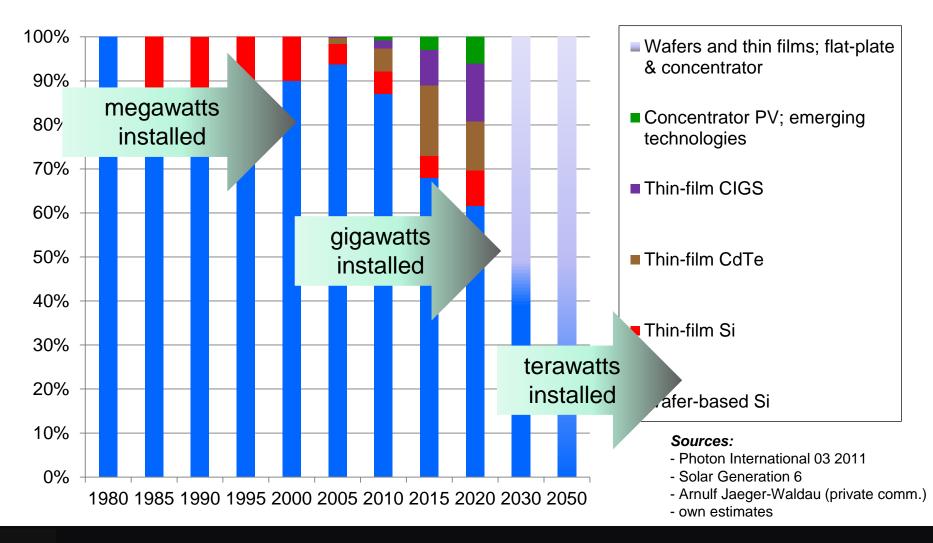
ECN/Holst Centre



Pilot production and laboratory: emerging and novel technologies

- super-low-cost concepts
- super-high-efficiency concepts

Cell & module technologies (concentrator)



<u>Commercial:</u> multi-junction III-V semiconductors

Module efficiencies 25 ~ 30%

PV technology shares

7

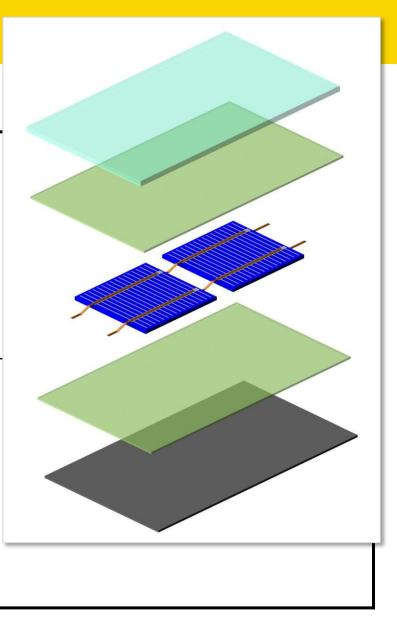
Contents

- The photovoltaic technology portfolio
 - wafer-based silicon in perspective
- Meeting expectations: from gigawatts to terawatts
 - can wafer-based silicon deliver?
- Outlook
 - the benefits of diversity

Strengths	Weaknesses
Opportunities	Threats

 Strengths high efficiency extensive track record reliability & lifetime synergy with micro- & nanoelectronics industry 	Weaknesses
Opportunities	Threats

 Strengths high efficiency extensive track record	 Weaknesses (current) poorly integrated processing significant materials cost
reliability & lifetime synergy with micro-	component suboptimal aesthetics of some
& nanoelectronics industry	products
Opportunities	Threats



Wafer-based silicon P

Strengths

- high efficiency
- extensive track record reliability & lifetime
- synergy with micro& nanoelectronics industry

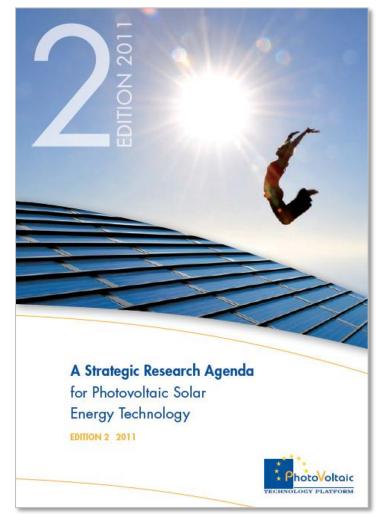
Opportunities

 Strengths high efficiency extensive track record	 Weaknesses (current) poorly integrated processing significant materials cost
reliability & lifetime synergy with micro-	component suboptimal aesthetics of some
 & nanoelectronics industry Opportunities further increase total-area efficiency reduce materials consumption & use low-cost materials implement advanced device designs & processes 	products Threats

Strengths	Weaknesses (current)
 high efficiency 	 poorly integrated processing
 extensive track record reliability & lifetime 	 significant materials cost component
• synergy with micro-	 suboptimal aesthetics of some products
CRYSTALCLEAR Glass EVA Cells EVA Conductive adhesive & Interconnection foil	

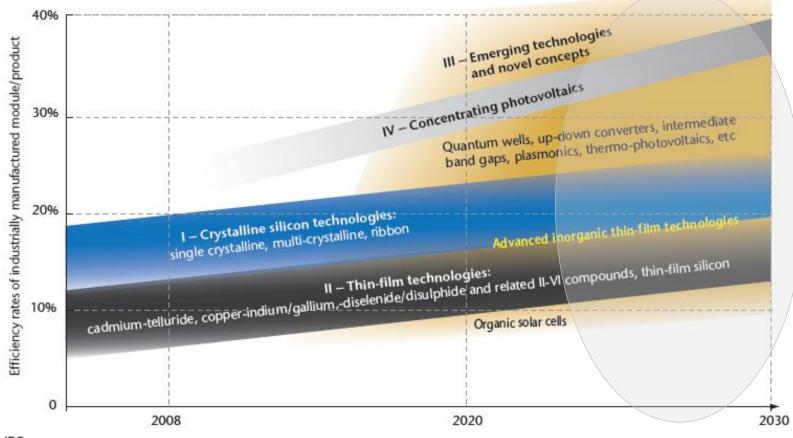
Strengths	Weaknesses (current)
 Selected options	 poorly integrated processing significant materials cost
for improvement: heterojunctions rear-contact /rear junction	component suboptimal aesthetics of some
cell designs n-type silicon Al₂O₃ surface passivation kerfless wafer cutting advanced light trapping seeded ingot casting high quality solar grade silicon Cu replacing Ag new encapsulants tandems more	products Threats

Strengths	Weaknesses (current)
 high efficiency extensive track record reliability & lifetime synergy with micro- & nanoelectronics industry 	 poorly integrated processing significant materials cost component suboptimal aesthetics of some products
Opportunities	Threats
 further increase total-area efficiency reduce materials consumption & use low-cost materials implement advanced device designs & processes 	 innovations remain in the lab cost reduction curve saturates at too high level (what is needed for very large scale use?) image of "technology of the past"



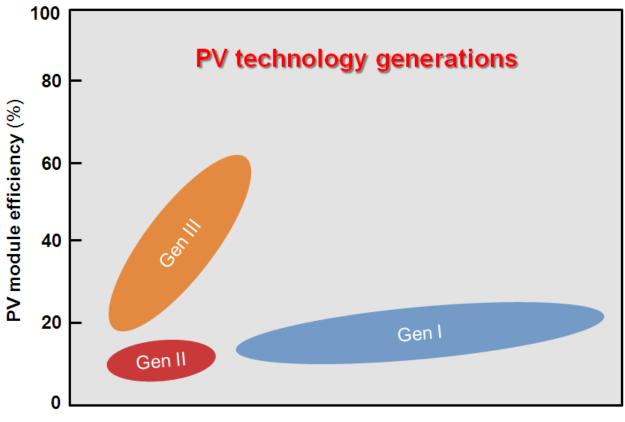
Contents

- The photovoltaic technology portfolio
 - wafer-based silicon in perspective
- Meeting expectations: from gigawatts to terawatts
 - can wafer-based silicon deliver?
- Outlook
 - the benefits of diversity



The benefits of diversity

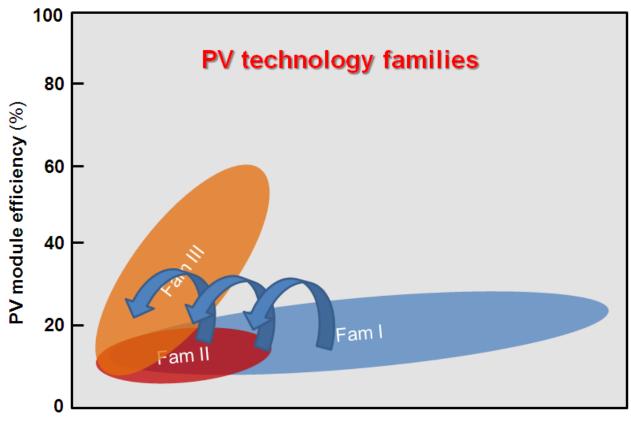
Evolution of technology portfolio and module efficiencies (IEA PV Roadmap, 2010)


Source: IEA PVPS.

Energy research Centre of the Netherlands

www.ecn.nl

Crystalline silicon: first generation PV?


PV module cost (per unit area)

Energy research Centre of the Netherlands

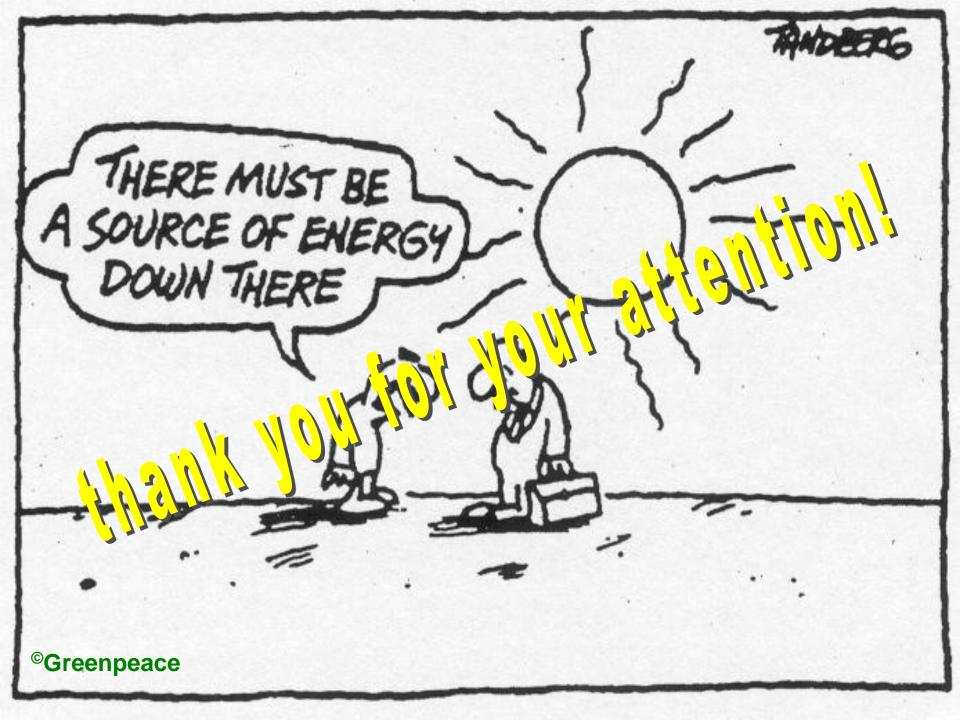
www.ecn.nl

Crystalline silicon: first generation PV?

PV module cost (per unit area)

Energy research Centre of the Netherlands

www.ecn.nl


Summary

Thank you:

- my colleagues at ECN and at Utrecht University
- the members of the European Photovoltaic Technology Platform
- the people at EPIA, WIP, Eurec and JRC
- the CrystalClear team
- the Becquerel committee
- the European Commission and the Dutch Ministry of Economic Affairs
- my family: Ineke, Koen, Pelle and Corijn
- you, the audience
- all other PV advocates around the world

